go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number BB/L000423/1
Title CESBIC--Critical Enzymes for Sustainable Biofuels from Cellulose
Status Completed
Energy Categories Renewable Energy Sources(Bio-Energy, Production of other biomass-derived fuels (incl. Production from wastes)) 50%;
Renewable Energy Sources(Bio-Energy, Production of transport biofuels (incl. Production from wastes)) 50%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields BIOLOGICAL AND AGRICULTURAL SCIENCES (Biological Sciences) 50%;
PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 50%;
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Prof P (Paul ) Walton
No email address given
Chemistry
University of York
Award Type Research Grant
Funding Source BBSRC
Start Date 01 April 2013
End Date 01 July 2016
Duration 39 months
Total Grant Value £724,594
Industrial Sectors Transport Systems and Vehicles
Region Yorkshire & Humberside
Programme ERA-NET Industrial Biotechnology (ERANETIB)
 
Investigators Principal Investigator Prof P (Paul ) Walton , Chemistry, University of York (99.998%)
  Other Investigator Prof G (Gideon ) Davies , Chemistry, University of York (0.001%)
Prof P (Paul ) Dupree , Biochemistry, University of Cambridge (0.001%)
Web Site
Objectives Biofuels hold the potential to make an essential contribution to UK and global energy demands. One of the keys to their development is the efficient conversion of biomass, particularly lignocellulosic biomass, into bioethanol. In this regard cellulose is by far the most important biomass source; it is very highly abundant (100 billion kilogrammes are produced globally every year), is present in all plants, and is the principal component of plants that can be grown densely on marginal land, e.g. switchgrass. The production of bioethanol from cellulose is, however, faced with a single critical issue. This issue is the chemical recalcitrance of cellulose. This recalcitrance severely limits its conversion to bioethanol and has, so far, prevented all attempts to generate significant amounts of bioethanol from sustainable plant sources. Indeed, reflecting the thoughts of all commentators on this issue, the International Energy Agency says that bioethanol will only play a major role in meeting sustainable energy demands if the key technological barrier of cellulose recalcitrance can be overcome (IEA, World Energy Outlook 2006).
The work described in this proposal seeks to address this key issue head-on. It builds on a recent and important breakthrough in the field, which is the full determination of the structure of a fungal enzyme called GH61. This class of enzymes is the long-sought-for 'missing link' in the conversion of cellulose to sugars by fungi. The action of the enzyme class is to oxidise cellulose directly thus making it tractable to other enzymes which can then convert it into soluble sugars and onto bioethanol. The structure of GH61 now points chemists towards the key chemical features of a synthetic catalyst which could be used itself to degrade cellulose. The way is now open, therefore, to generate cellulosic bioethanol sustainably. As such, the work in the proposal offers significant potential to the biofuel industry and to meeting the future energy demands of society.
Abstract Work described in this proposal aims to tackle head-on the single major limitation in sustainable bioethanol production. This limitation is their current inability to degrade effectively cellulose into glucose. As cellulose is, by far, the most abundant biopolymer synthesised in large quantities by all known plants (equivalent in energy to 20 times the global oil usage) its effective conversion to glucose and then into bioethanol via fermentation is of major importance. Indeed, all commentators on biofuels identify cellulose as the only really long-term sustainable source of bioethanol and that cellulose's recalcitrance to degradation is the limiting factor.
Of the more promising solutions that are being explored, the catalysed conversion of cellulose to glucose is the one that is attracting most commercial attention. In this context enzymatic degradation of cellulose by cellulases has been the focus of research for the last fifteen years, but it has been held back by a lack of understanding of how cellulose was initially attacked by oxidative enzymes, such that the cellulose is made accessible to more traditional cellulases. However, the field recently gained considerable momentum when the full structure of the fungal cellulose-degrading enzyme, GH61, was published in September 2011 gaining significant worldwide attention (10,000 downloads as of Jan 1 2012). This structure is vital as it now opens up the way for 1) understanding the key catalytic factors behind the enzymatic degradation of cellulose and 2) the development of biomimetic catalysts which carry out the same oxidative process. Given the importance of cellulosic bioethanol there is sure now to be a major worldwide effort to build on this discovery.
In this proposal we aim to take a genomics to catalyst approach to maximise the use of GH61s in the production of bioethanol.
Publications (none)
Final Report (none)
Added to Database 17/03/14